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ABSTRACT. By interpreting the right-hand side of a differential inclusion
as a fuzzy set, we define a general concept of likelihood for its selutions, in a
nonprobabilistic setting. We prove that under natural conditions there exists
a solution having maximal ].iEe].ihood. Given a convex valued, Lipschitzean
differential inclusion z' € F(z), we propose two particular definitions of
likelihood, relying on the distance between the derivative of a solution z
and the {relative) boundary of F(z). We use them to characterize the points
which lie on the boundary of the funnel as those of minimal likelihood, and to
derive other qualitative properties. We also study the multivalued selection
from F consisting of the points in F(z) having maximal distance from the
boundary of F(x).

AMS (MOS) Subject Classification: 34A60.

1. INTRODUCTION
Dynamical systems whose evolution law has some uncertainty may be
governed by differential inclusions: the system can adopt any trajectory z(-)
such that 2'(%) belongs to the set of feasible velocities corresponding to the
state z(t), namely

@'(t) € F(z(t)), tel0,T]. (1.1)

If some additional informations are available, the modeler may define a rule
to select from the set of solutions those which are supposed to be meore fit to
describe the system; in other words, to choose the “most likely” trajectories.
For example, in economics “slow” or “heavy” solutions were introduced, see
[3], (6], while in population biology solutions having “maximal growth” were
defined, see [13]. In the case of absence of other informations, an intrinsic way
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of choosing “the most likely path” of a differential inclusion was proposed by
A. Bressan [8] and A. Cellina and R.M. Colombo [10]. This method, entirely
independent of probabilistic considerations, was called “metric”, because it
relies on the metric structure of a space of functions. It provides a map on
the set of trajectories of (1.1) which is not a measure, being not additive: a
number Lg(z), called “likelihood”, is assigned to a solution z of (1.1), given
by the infimum of the (Hausdorff or Kuratowski) measure of noncompactness
in an L, space of the seis

v 1v € Fy) lly(t) —=()ll <e, Vie[0,T)} (1.2)

as ¢ = 0. According to this definition, a solution of (1.1} is more likely than
another if there are more solutions of (1.1) (in the sense of the measure of
noncompactness) close to it.

In this paper we try to continue the qualitative analysis of differential
inclusions on the same line of the above considerations. We remark that
the concept of fuzzy sets and of fuzzy differential inclusions seems to be
suitable to associate a likelihood with solutions of (1.1) in a nonprobabilistic
framework. A fuzzy set F can be represented by a “membership function”
F(z), which to every point z of a space X assigns a value F(z) indicating
how much # is “in” F. We will consider membership functions having values
in {—oco} L/{0,1], the best value being 1. By using fuzzy sets, J.P. Aubin
i3] introduced the concept of fuzzy differential inclusions as problems of the
form (up to the sign of membership functions)

Flz(t),2'(t)) > o0, te0,7]; (1.3)

here F denotes a fuzzy set-valued map,i.e. a map that associates with every
point z € X a fuzzy set (represented through its membership function)
F(z,): X > {—00}U[0,1]. Having the fuzzy differential inclusion (1.3), it
seems natural to consider the solution set Sp of (1.3) as a fuzzy set with the
membership function

T
L(v) := I/T\/u' Flu(t),v'(2))dt.

For v € 8F the value £{v) may be considered as a measure of the likelihood
of the solution v. This concept may be useful as an alternative to the use
of stochastic differential equations (see (1]). A study of fuzzy differential
inclusions may be then motivated as an appropriate environment to define a
nonprobabilistic likelihood. We also define the likelihood of a point £ in the
reachable set Rp(T) of (1.3} at the time T by

L{¢) := sup{L(u) | u € SF,u(T) = €}. (1.4)
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The above definition generalizes the concept of metric likelihood given in
(8] and [10]. In fact the main result of those papers is a representation of
L4(-) as an integral functional, whose integrand may be viewed as a particular
membership function for F(z). Roughly speaking, this function depends on
the distance between the derivative 2'(f) of a solution of (1.1) from the set
of extreme points of F(z(t)), assigning minimal likelihood to the solutions
of ' € extF(z). We recall that the idea of calculating the measure of
noncompactness of a class of sets of functions through an integral functional
goes back to [11].

In the first part of this paper (§3) we sum up some basic properties
concerning the fuzzy likelihood, e.g. the existence of solutions of (1.3) with
maximal likelihood. We also introduce the concept of solutions with maximal
“myopic” likelihood, i.e. solutions satisfying

sup F(ov(t),u) = Flv(t),v'(#)) > —co , (1.5)

wEX

and show that there exist solutions satisfying (1.5). This approach gener-
alizes the concept of 4-maximal solutions, introduced in [16] for differential
inclusions on closed sets.

In the second part of this paper (§4,5) we associate two particular mem-
bership functions with the differential inclusion (1.1) and investigate some of
their properties. Roughly speaking, the first function, called ¥, measures
the distance of a point y € F{(z) from the boundary of the set F(z), while the
second one, called F,, the distance of y € F(z) from the relative boundary
of F(z). Our choice assigns the minimal likelihood £ (resp. £;) to all the
solutions of ' (t) € bdF(z(t)) (resp. of «'(¢) € relbdF(z(t))). With our def-
initions the set of solutions of (1.1) and of (1.3} coincide. Section 5 contains
some qualitative results on the reachable sets of Lipschitzean differential in-
clusions, obtained using £y. In particular, if F has compact and convex
values with nonempty interior, we characterize the boundary of the funnel
of (1.1) from a fixed initial value as the set of points in it having minimal
likelihood. This property may he viewed as parallel to Hukuhara's theorem
for differential inclusions (see Theorem 2.2.4 in [5]): from ¢ € bdRp(T) we
deduce that every solution of (1.1) reaching it is such that «'(t) € bd F{=(f))
almost everywhere. We also give a refinement of Hukuhara’s theorem itself.
Moreover, we show that the map La, defined on the reachable set as in (1.4),
is continuous. We recall that the definition in [8] and [10] provides a map
which is upper, but not lower, semicontinuous (see [10], Example 3.7).

Finally, §6 contains an analysis of the multivalued selection Cr(z) from
F consisting of those points in F(z) having maximal distance from bd F(x).
It is shown that it is upper semicontinuous {in finite dimensions) and it
may not be Lipschitzean if F is so. This investigation is motivated by the
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Then we can choose a weakly convergent subsequence (in L1(0,T}) #,,, (-) —
v'(-). Since F is concave in the second variable, from Theorem 10.8.i, p. 352
in [12] it follows

T T
/ Fle(t),v'(t))dt > Iigl_.supfu F(vn,(1),v, (1))dt 2 A

A

Let us recall that, given the fuzzy differential inclusion (1.3), two con-
cepts of solutions having maximal likelihood may be considered. The first
one is based on the so-called “intertemporal” optimization, i.e. one looks for
a trajectory maximizing the integral functional £(v) on the set of solutions of
{1.3). This concept assumes an insight into the future. The other approach,
called “myopic” optimization, looks for a solution of (1.3) such that the
equality (1.5) holds.

Remark 3.1. The existence of a solution with maximal intertemporal like-
lihood £ is a straightforward consequence of Proposition 3.1.

The next proposition ensures the existence of a solution having maximal
myopic likelihood.
Proposition 3.2, Let K := B0,MT|. Let F : K x X ~ [0,1]U{—o0} be a
locally bounded fuzzy set-valued map, continuous on its domain, with convex

non-trivial values. Then there exists a solution to (1.5).
Proof. Let us consider the set-valued map

Giz):={ye X | Flz,y) = sg;‘)_ Fl(z,2)}.

Then G(B(0,MT)) C B[0,M], and from the marginal map theorem in [6] it
follows that the map G has closed graph and convex compact values. There-
fore there exists a solution v to ¢'(t) € G(z(¢)). This solution satisfies (1.5).

YA
Remark 3.2. We remark that the myopic maximization of likelihood gen-
eralizes the problem of finding y-maximal solutions, i.e. solutions to the

system
2'(t)) € G(=(t)),

y(2'(t)) = sup (z),
EG(x (1))

z(0) =0,

where v : X — JR is a given function. For differential inclusions on closed
sets the existence of y-maximal solutions was studied in [16]. In fact, such
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a solution can be viewed as a trajectory with maximal myopic likelihood for
the fuzzy differential inclusion (1.3}, if we define

—oo if y& Gz
F(z,y) = : (=)
1(y) if y € G(=).
A
Finally, the reachable set Rp{T') may be regarded as a fuzzy set with
the following membership function:

Definition 3.4. For every £ € X we define

e if¢ ¢ Re(T)
L{¢) = { sup{L{u) | u € 8F,u(T} = £} othcrwi;e.

Remark 3.3. Being £ upper semicontinuous and &p compact, the supre-
mum in Definition 3.4 is attained. Moreover, the map L : Rp{T) — IRT is
upper semicontinuous. In fact, let (£,)n>1 be a sequence in Rp(T') converg-
ing to £ and let (z,),>1 be solutions of (5.1), (5.2) such that L(£,) = L(zn).
By compactness there exists a subsequence z,, uniformly converging to =.
By the upper semicontinuity of £,
L{&) > L(z) > limsup L(z,, ) = limsup L{(£,.).
k—oo k—oo

Since the above argument can be repeated for every subsequence of (£, ), the
upper semicontinuity of L is proved.

A

4. TWO METRIC LIKELIHOODS
Let F : B[0,TM] — 2% be a continuous set-valued map with convex
and compact values, such that F(B[0,TM]) C B[0,M], and consider the

initial value problem

() € F(z(t)),

2(1) € Flo() )
z2(0) =0.

In this section we introduce two membership functions for the map F and

define the corresponding likelihood functions for the solution set Sr and the

reachable set Rp(T) of (4.1). We call them “metric” likelihoods since they
are essentially based on the Euclidian distance in X.

Definition 4.1. Let F : X — 2% be a set-valued map with values having
nonempty interior. We define for it the fuzzy set-valued map

Folzy) = { d(y, bd F(2))/ sup,ep,, d(z, bdF(z)) ify € F(=)

—co otherwise.
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For each v € Sp we define its 8-likelihood on the interval [0,T) as

T
Lo{v) = I/T/D. Fa(v(t),v'(t))dt. (4.2)

Remark 4.1. By Lemma 6.1 below and Proposition 2.1 and Lemima 3.1 in
[15] it follows that, for every =z € B[0,TM], Fs(z,") is concave, and Fp(-,-)
is upper semicontinuous and continuous on its domain. Hence (4.2) defines
a fuzzy likelihood that satisfies the assumptions of the Proposition 3.1 and
3.2.

FaY

Our second definition provides a notion of likelihood which is meaning-
ful also for set-valued maps with values having everywhere empty interior.
Denote by b(z) the barycenter of F(x) + B (see §1.9 in [5)), i.e.

575
— dm.,,
mu(F(2) + B) Jre)on"

which is well defined hecause F(z) + B has positive measure in X = IR™.
By Lemma 9.2 in [9], b(z) € riF(z) and, by Theorem 1, p.77 in [5], (-} is a
continuous selection from F(-). If moreover F(-) is Lipschitzean then ¥(-) is
also Lipschitzean.

z) =

Definition 4.2. Let F : X — 2% be a set-valued map. We define for it the
fuzzy set-valued map Fy as

Filz,y) = {’ffp{z € R | (y,2) € co{ (F(=) x {0}) U {(b(z),1)}}} ify € F(x)

oo otherwise.

For each v € Sp we define its b-likelihood on the interval [0, T as

T
Ly(v) = 1/1".[0 Fu(v(t),'())dt. (4.3)

Remark 4.2. F, is by construction concave in the second variable; it is
also jointly upper semicontinuous and continuous on its domain, by Lemma
16 in §5 of [17]. Therefore (4.3) defines a fuzzy likelihood that satisfies the
assumptions of Proposition 3.1 and 3.2.

FAN

The two preceding definitions follow the same line: the first one assigns
zero likelihood to solutions satisfying

z'(t) € bd F(=(t)) for ae. t€[0,T],
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while the second one to solutions for which
¢'(t) €ErbF(z(t))  for ae. te[0,T)

The trajectories of (4.1) which maximize the §-likelihood in the myopic
sense are the solutions of the differential inclusion

{z’(t) € Cr{=(t)),

2(0) =0, (4.4)

where

Cr(z) ={y € F(z) | d(y,bdF(z)) = sup d(z,bdF(z))}.
2EF(z)

As it is shown in the Example 6.2 b) helow, the problem (4.4) may not
have a unique solution, even if F' is Lipschitzean. On the other hand, the
solutions of (4.1) which maximize the b-likelihood in the myopic sense are

those satisfying
2'(t) = b(=(2)),
z(0) = 0.

Therefore, if F is Lipschitzean, there exisis a unique solution to (4.1) having
maximal b-likelihood (in both myopic and intertemporal sense).

Remark 4.3. Let £ be the metric likelihood defined in [8] and [10],

Lo(v) = lim A({u' | w € S, u o] < &}).

By the representation theorem 3.2 in [8], if F' is Lipschitzean, compact and
convex valued, the 3-likelihood of a solution v of (4.1) is given by

T 1/2
Ly(v) = ( / hZ(v'(t),F(v(t)))dt) ,

0

where for a nonempty compact convex subset £ of X and w £ §2 the function
h is defined as

. 1 1/2 1
h{w,{l) = sup {( ; |£(¢) - W|2d€) | f£:00,1] — Q,/l; f(&)d¢ = w} ,

and h(w, () = —oo if w ¢ §2. The {unction & is also proved to be upper semi-
conlinuous and concave in w. The analogous Theorem 4.5 in [10] consiructs
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for a map F of the form r(t) + s(¢)bdlU/, U convex (F independent of =),
another function A with similar properties, and represents Lg(v) as

T 1/p
( /; [A(Y'()]° dt) .

Hence, the definition of fuzzy likelihood of the preceding paragraph contains
the definition of Lz, provided the L, norm is substituted by the L, one. As
a consequence of both representations, Lg(¥) = 0 implies

2'(t) € ext F(z(t)) for a.e. tc|0,T],

hence both L£5(v), L3(v) are zero.

5. ON THE FUNNEL OF LIPSCHITZEAN
DIFFERENTIAL INCLUSIONS
Let M > 1 and F : B[0,MT] — 2% be a Lipschitzean multifunction
with compact and convex values, such that F(B[U MT)) < B[0,M]. We
consider the set of solutions of

{Z'((;; € Fla(t), (5.1)

and study the likelihocod Lg, defined in the previous paragraph for z € Sp,
and the likelihood of a point ¢ € Rp(7), 0 <17 < T,

Ls(£) = max{Ls(z) |z € SF,2(r) = £},

where we consider L as an integral over the interval [0, 7]. Here the normal-
ization of F5 can be ignored, in order te allow F(z) to have empty interior
for some z: we set, for ¢ € §r, Lo(= fu d(e(t), bd F(2(t})) dt. The main
technical tool of th1s paragraph is the fact that a solution  of (5.1) is also the
solution of a Lipschitzean differential equation “within the differential inclu-
sion”, as it was pointed out by several authors (see [21], [19}, [2]). Namely,
there exists a Carathéodory Lipschitzean selection f(t,z} from F(z) such
that 2'(t) = f(t,2(t)) for almost every t € [0,T].
The following properties hold.

Theorem 5.1. Let 0 < r < T and ¢ be in Rg(r). Then (r,£) € bdRe
implies Ls(€) = 0 on the interval [0,7]. As a partial converse, if 0 € intF(0)
or if int F(£) # 0, then Ls(£) = 0 on the interval [0, 7| implies (1,£) € bdRf.
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i w Proof. Assume, by contradiction, that there exist {r,£) € bdRp, ¢ € Sp
and E C [0, 7] such that £ = z(7), but m(E) > 0 and 2'(t) € int F{z(2)) Vte

| E. By Theorem 1 in [21] there exists a Carathéodory function f : [0,7] x

Al B[0,MT] — X, Lipschitzean in z for a.e. {, such that f({,z) € F(z) for

e i all ¢,2, and 2'(t) = f(¢,2(t)) for almost every ¢ € [0,7]. By possibly taking

! a subset, we can assume that f(-,-) is jointly continuous on E x B[0, MT].

| (Scorza Dragoni theorem). Let T > {, € E be a density point of E such that
z'(t,) = f(to,2(t.)). By the Hausdorff continuity of F, there exist 7 > 0 and
1 > 0 such that

flto,2(to)) +rB C Fly) i |y —2(t)] <7. (5.2)

Choose t,, 7 > t; > i,, such that

o t—t, < L, (5.3)
: l: (B N [to,ta]) 2 (8 — )3 = 535)s (54)
| |£(to,2(2.)) — F(t, 2(8))] < % Vt e EN[to,t], (5.5)
' | and define
G(t,y) = {ﬁ:oyl(t)) +rB g: i EZ,:H

T Then G(t,y) is measurable in £ and Lipschitzean in y, and G(t,y) C F(y) if
! t ¢ [to, 4] orif ¢ € [to, 1] and |y — =(t,)| < n. In particular, by (5.2) and
{5.3) all the solutions of

{u'(t) € G(t,u(t)) (5.6)

u(0)=10

| are also solutions of (5.1). Thus, Rg C RF.

] We claim that (r,£) & intRg, reaching a contradiction with (r,£) €
Coo bdRp. Indeed, RG(tl) = 2(t,)+ (1 — o) fto, 2(t)) + (t1 — t,)r B. Moreover,
o if we set 2 to be z(t,) + (t1 — o) f(a, =(f,)), then, by (5.4) and (5.5)

lo(t) — 2] < [' 12 (£) = F(to, (t))| dt

@

<f M) faeaz [

[to 1 NE

S (tl - tn) =+ %(tl - tu) < r(tl - tu)’

| =
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which implies that 2(t:) € intRg(t:). Fort > t;, G(¢,z) and f(t,z} coincide.
Since f(t,-) is Lipschitzean, for all ¢ > #; the point (£,z(2)) belongs to the
interior of the funnel of w' = f(¢,u), u(t,) € Ra(t1)-

To prove the second part of the statement, assume by contradiction that
(7,¢) € intRp and let 0 < 1, < T and » > 0 be such that Bl¢, 7] € Rp{o) for
all m <o < 7. If 0 € intF(0), choose z € Sp such that £ = z(m,) and set

- 0 fo<t<r—n
y(t) = z(t—(r—m)) ft>7-m;

then y(7) = £ and Ls(y) > 0 on [0,7]. K intF(£) # 0, we can assume that
there exists v € intF(£, ) for every & € B[£,r]. Let 7y < 7' < T be such that
(1 — )|l < r and choose ¢ € S such that (') = £ + (7' — 7)v. Set

_ J =) fo<e<
y(t)_{£+(t—'r)v fr'<t<r;

then y(7) = £ and L5(y) > 0 on (0, 7], concluding the proof.
FAN

Remark 5.1. If all the values of F' have empty interior, the second part
of Theorem 5.1 is no longer true, because it may happen that intRp # 0.
Indeed, let G : IR — IR? be defined by

o = [ {0 —1<v<+1} | ifr<1/2
(T)_{{(wcosfzr(r—1/2),'usin21r(r—1/2))[ —1<v<+1} ifr2>1/2,

and set F: R® — 28’ to be

F(z1,22,23) = {{y1,%2,%3) | 2< 11 €3, (y2,33) € G(=1)} .

Clearly, F(.,-,-) is Lipschitzean with convex, compact values with empty
interior. However,

Re D {(t,tal,ez,ca)lt>1/4, 2<4 <3, (fz,fa)Ej G(&la)ds}

= {(t1t£]:£21£3) | t > 1/4) 2 S 61 S 31

—sin 2w(&1t — 1/2) + sin 2w(&t — 1/2)
21I'£1 S 62 S 2#&1 ’
cos2mw(£8 —1/2) -1 <t < 1--cos27r(§1t—1/2)}
2, shs 2n, ’
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which has nonempty interior.

FAN

The technique of the parametrization of the right-hand side of (5.1} can
also be used to prove two properties which provide an analogy between Lips-
chitzean differential equations and inclusions: we show that the multivalued
flow generated by F is open, and that a solution  of (5.1) is a boundary solu-
tion on an interval [0, 7] (in the sense that z(t) € bdRp(t) forall 0 < ¢ < 7)if
and only if {7} € bdRp{r). This statement refines the muliivalued version
of Hukuhara's theorem (see Theorem 2.2.4 in [5]) in the case of Lipschitzean
differential inclusions. .

Proposition 5.1. Let 0 < 7 <T. Then

(i} the multivalued flow £ — Rg’ﬂ(‘r) generated in X by the map F is
open, in the sense that the set | J..q RES’E)(T) is open if @ C B[0,MT] is
opern;

hence

(i} if £ € bdRp(7), for every =(-) € Sp such that z(7) = £ we have that
z(t) € bdRp(t) for all t € [0,7].
Proof. (i) Let £’ € R = Jzeq Ri,l.]'ﬂ(r) and let 2 € Sp be such that 2(0) € f2
and z(7) = £'. Let, by Theorem 1 in [21], f: [0,T] x B[0,MT] - X be a
Carathéodory (single-valued) function, Lipschitzean in # for a.e. ¢, such that
f(t,z) € F(z) for all t,z, and 2'(t) = f(t,z(t)) for a.e. ¢ € [0,T]. Since f is
Lipschitzean in #, the set |Jycq RS.-D’E)(T) < R contains £’ in its interior.

(ii) Let ¢ € Sp be such that z(t) = ¢ € bdRp(T), but 2(t,) € intRp(t,)
for some 0 < 4, < 7. Let » > 0 be such that Blz(t,),7] C Rr(t,). By (i),
w(7) € 10t Ui o0 <r Rg,f‘”f}(‘r) C Rp(r), a contradiction. A

Remark 5.2. In [18] the author proves the following property:

Hz(.) is a boundary trajeciory of ' € F(t,z), 2(t,) =z, on [t,, T, i.e.
() € bd R for all t €]t,,T], then ='(t) € bdF(t,2(t)) for a.e. t € [t,,T].

In that paper F is assumed only to be a {convex-valued) Carathéodory
map. By Proposition 5.1, the first part of Theorem 5.1 can be obtained also
from the above property. We mention finally that (20] contains a result
stronger than Theorem 5.1, in the case where bdF(z) is a C!-smooth hyper-
surface of JR": the authors prove that for a boundary trajectory of (5.1} the
Bouligand contingent cone to F(z(t)} at #/(¢) and to Rp(t) at z(t) coincide
a.e.

FAN

Theorem 5.2. The map £ — Lg(£) from Rp(T) into R* is continuous.

Proof. By the Remarks 4.1 and 3.3 above, Ly(:) is upper semicontinuous.
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To show the lower semicontinuity, we recall first that La(-) > 0, so that
Lp is automatically lower semicontinuous at every £ such that La(£} = 0.
Let £ € Rp(T) be such that Ls(f) > 0 and let ¢ > 0 be given. We want to
show that there exists § > 0 such that |[{ — €| < § implies Ls{¢)— Ls(€) > —¢.
Choose, by the Remarks 4.1 and 3.3, 2(-) € Sr such that Lg(z) = Lp(£) and
let E C [0,T] be such that m(E) > 0 and «'(f) € intF(z(2)) for all t € E.
Let, by Theorem 1 in [21], f : [0,T] x B{0, MT] — X be measurable in ¢ and
Lipschitzean in z, such that f(t,z) € F(z) for all ¢,z and '(t) = f(¢,2(t))
almost everywhere. By Scorza Dragoni’s theorem, we can choose (by possibly
modifying E) a compact set E' O E such that m(E') > T — ¢/(12M) and
f|E,“,['J arm) is continuous. Let ¢, € E be a density point of E. By the
continuity of F' we can assume that there exist ¢ > r > 0 and 1 > % > 0 such
that

f(to,2(t,)) +»B C F(y) if |ly—o(t,) <n. (5.7)
Let o > 0 be such that '

1f(t,2) — f(s,9)| < -;— Vt,s € E', Va,y: |t — 5| + |z — y| < 20(5.8)
H(bdF(z),bdF(y)) < -;- Va,yile—y <o (5.9)
Let moreover o > ¥ > 0 be such that, if 7 € [0,7] and |z — 2(7)| < ¢, then

the functions y : [0,T] — X for which |v'(2) — f(¢,y(£))| < » and y(7) = 2
satisfy

|y(2) ~ 2(t}| < & Yie [r,T]. {5.10)
Let ¢; > £, be such that

7 o 4 ¢
tl_to(ﬂl\}&‘ -‘2— 6— (5.11)
m(EN[t, — t]) > (8 — to)(1 — le) (5.12)
Set
_ ) flity) ift ¢ [t,,t
Glty) = { f(tjm(to)) +rB ift i {ta,t:} .

Then G(-,y) is measurable, G(¢,-) is Lipschitzean and the solutions y of 3’ €
G(t,y), y(0) =0, by (5 7) and (5.11) are also solutions of (5.1). Moreover, by
the same argument as in the proof of Theorem 5.1, the reachable set Rg(T)
contains £ in its interior.
We wish to estimate £s(y) — Lo(€) for an arbitrary solution y of 3 €
G(t,y); y(0) = 0. To this aim, we consider first the distance |y — z||. If
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t < t,, then y(t) = 2(t); moreover, for every ¢ € [t,,1;] we have

) =21 < [ 1F(tor2(t) = 7t 06l dt + 7t 1)
<[ () - el
_ [test:]NE

[ [fltaralt) — o2 e+ ol —t0)
[te 1 \E

r(ty ~to) r{ty —t,)
< M
. 6 + 12M

+r(ti —t)<d <o,
by (5.8), (5.12) and (5.11). Hence, by (5.10),
(@) —=(t)l < & Wt € (¢, T].
This estimate, together with (5.8), (5.9), (5.11) and (5.12), implies
T
Laly) - Lo(z) = f (d(y'(2), bAF(y(t))) — d(£(2,(£)), bd F((2)))) dt
: T T
> - f ly'(2) — F(t,2(2))] dt — f H(bdF(y(t)), bd F(x(1))) dt
> / |F(or2(to)) — F(t,2(2))| dt
[io,tl]ﬁE"
- / £t () — £(t, ()| dt ~ 2Mrm([t,, T]\ E")
,, TINE!

T
—r(ty ~t,) - j; H(bdF(y(t)), bd F(x(t))) dt

- (545
> —€.

+ErzT)
67676

Since for every ¢ in a neighborhood of £ there exists a solution ¥ of (5.1)
reaching it such that Lo(y) — Lo(§) = La(y) — La(z) = —¢, we have that

Lo(&) — La(€) » —e, and the proof is concluded.
FaY

Remark 5.3. If intF{z) # @ for all =, then the preceding results remain
true also for the likelihood £} of Definition 4.2.
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8. APPENDIX: ON CONVEX BODY VALUED MULTIFUNCTIONS

Let F be a Hausdorff continuous multifunction from a metric space X
into the closed, convex, bounded subsets of a normed space ¥ with nonempty
interior. Some continuity properties of such maps, as well as the existence
of continuous selections, were established in [15] and used by the same au-
thors in the analysis of infinite dimensional differential inclusions [14]. In
particular, in [15], Lemma 3.1 and Propesition 3.7, it was proved that the
map

z — p(e) :=sup{r > 0| Iy € F(z): Bly,r} C F(x)}

is continuous, and the multifunction

T F,u(:)(w) = {y € F(m) | d(y$bdF(z)) Z P(z)}

is Hausdorfl continuous, where 0 < pu(z) < p(2)/2 iz a given continuous
function.

Aim of this paragraph is to further investigate the maps p(-) and F,(,(-),
with u(-) = p(.). Its main results assert that « — F(,)(z) is upper semicon-
tinuous (in finite dimension) and may not be lower semicontinuous; moreover,
if F is Lipschitzean and F, is single-valued (as it is the case when the values
of F' are strictly convex bodies in IR"), the continuous selection @ — F(,)(2)
may fail to be Lipschitzean. Therefore the point F,;)(2), i.e. the center of
the ball inscribed in F(x), enjoys a feature similar to the Cebysev center, i.e.
the center of the ball circumscribed to Fz) (see [5], p.75). We state most
of the results in infinite dimensions, for the sake of completeness.

According to the previous Definition 4.1, the solutions of @' € F,(.(=),
z(0) = 0 are those in §F with maximal 8-likelihood in the myopic sense.
The Example 6.2 below shows that there can be solutions of (5.1) which have
maximal myopic §-likelihood but not intertemporal maximal #-likelihood.

In what follows, we denote by B the set of all bodies in Y, i.e. the closed,
convex, bounded subsets of ¥ with nonempty interior.

Let X be a metric space and ¥ a reflexive Banach space, with open unit
ball B. For any A € B we define

pa=sup{r >0 |3y Ad:y+rB C A}, (6.1)

and

Ca={yecA|y+paBC AL (6.2)

In other words, C, is the set of all centers of the balls inscribed in 4.
The first result concerns C' 4.
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Proposition 8.1. For any A € B, the set 4 is nonempty, convex and
closed. If Y is finite dimensional and A is strictly convex, then C, is a
singleton.

Proof. Let (yn}n>1 be a sequence in A4 such that

¥n + (pa—1/n)B C A

By the weak compactness of A, we can suppose that 4, — y € 4. Let w bein
y+p.48B. By Mazur’s theorem there exists a sequence of convex combinations
Zn = ) iCo AMYn4i, with z, — y strongly. Hence, if n is sufficiently large,
llw — 2a)| < pa — 1/n and therefore w € A, because w = w — 2, + 2 =
Z?;“ AM(w — 2z + Yn+i) is & convex combination of points in A. Hence C 4
is nonempty.

The convexity of C 4 is straightforward, while the closure follows from

Ca={y e 4|d(y,bdA) =p4} (6.3)

{see [15], Lemma 3.2).

Let now ¥ he finite dimensjonal and 4 strictly convex, and assume by
contradiction that yi,y2 € Cua, y1 # y2- Set z to be (y1 1+ y2)/2 and notice
that d(z,bdA4) = p 3. Choose w € bd4 such that ||w—z|| = p4. Let H be the
hyperplane orthogonal to w—z: it is a support hyperplane for A and therefore
{w 4+ M} N A is contained in bdA. We have also that y» — y; is orthogonal to
w — z, otherwise d{y;,bd4) < p4 or d(y2,bdA4) < pa. Hence y; +w — 2z €
w+ H, 1 = 1,2, and therefore bdA contains a segment, a contradiction.

A

Let F': X — B be a multifunction. We set pr(z) := pr(;) and Cp(z) =

Cr(z). The following results hold.

Proposition 8.2. Let F : X — B be a Hausdorf continuous multifunction.
Then the map & ~ Cp(z) is upper semicontinuous, provided Y is endowed
with the weak topology.

Before the proof, we state a technical lemma.

Lemma 8.1. Let Y be a normed space and K C Y a convex set. Then the
map

di : K — d(y,bdK)

is (continuous and) concave,
Proof. Let 3,z be in K. Since K is convex, the set

H = co{Bly,d(y,bdK)] U Blz,d(z,bd K)|}
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is contained in K. Fix A € (0,1). Then

d(hy + (1 = A)z,bdK) > d(Ay + (1 — A)z,bdH)
2 Ad(y,bdK) + (1 — A)d(z,bd K) .

A
Proof of Propaosition 8.2. Let 7{X) and o{Y") be, respectively, the metric
topology in X and the weak topology in ¥. It suffices to prove that the
graph of Cr(-) (graph(Cr) = {(z,y) € X x Y | y € F(X)}) is closed in
7(X)xo(Y). To this aim, we recall first that by [15], Proposition 2.1, Lemma
3.1, the maps 2 — Y \ F(2) and =z — bdF(z) are Hausdorff continuous and
. the map = — pp(z) is continuous. Let (z,)n>1, {#n)n>1 be sequences such
that y, € Cr(za), n — z in X and y, — y weakly in ¥. We want to
show that y € Cr(z). We remark first that, for n large enough, y, € F(z),
because d(yn, Y \ F(z)) = d(yn,Y \ F(an)) — H(Y \ F(2.),Y \ F(z)) > 0.
Then, let by Mazur’s theorem z, = Ef__’:u Afyn1i be a sequence strongly

converging to y and fix £ > 0. By Lemma 6.1 and the continuity of bdF(.)
and pp(-), for n large enough we have

d{z,, bdF(z)) = d(i: APYniir bAF(2))

i=0

kn
> 3" Ard(yn4s, bdF(2))

=0 :
kn
2 Y A7 (d(yn+isbdF(2n4i)) — H(bdF(z),bdF(zn4:)))

i=0
..>. PF(‘B) — £,

where the last inequality is obtained recalling (6.3). Since £ is arbitrary, we
have that d(y,bdF(z)) > pp(z), concluding the proof. :
VAN

Corollary 8.1. Let Y be finite dimensional and F(z) be strictly convex for
every 2 € X. Then the (single-valued) map z — Crp(2) is continuous.

Example 8.1. The map Cr(z) need not be lower semicontinuous.
In fact, it suffices to let F : [0,1] — 27" be defined as
F(z) = co{BU((3,0)+ (z + 1)B)}.
Then Cr(0) is the segment [{0,0),(3,0)], while for any z > 0 Cr(z) is the
point (3,0).
FAN
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We consider, finally, the case where F' is Lipschitz continuous. We show
that, although the radius pg(-) of the inscribed ball has the same Lipschitz

constant as F(-), its center (when it is unique) may fail to be Lipschitzean,
even in IR2,

Proposition 6.3. Let F : X — B be Lipschitzean with Lipschitz constant
L. Then the map pp : X — IR" is Lipschitzean with the same constant L.
Proof. The same argument of Lemma 3.1 in [15] can be applied also to
obtain the Lipschitz continuity. Indeed, assume by contradiction that there
exist z;,2y € X such that |pp(z1) — pr(22)| = Ld(z1,22) + 7, 7> 0. If
pr(z2) > pp(ey), take y € F(z3) such that

Bly,pr(z1) + Ld(z1,22) + /2] C F(w2).

By the Lipschitz continuity, we then have
Bly,pr(z1) + Ld(21,22) +1/2] C F(21) + Ld(z1,22) B,

which by the convexity of F(x,) implies Bly, pr(z1) +n/2] C F(z1), a con-
tradiction. If pr(e:1) > pr(zz) a symmetric argument can be used.

A

Example 6.2. a) A Lipschitzean map F : [0,1] — 2%, with compact and
strictly convex values with nonempty interior, such that ¢ — Cp(t) is not
Lipschitzean.

Set

2
F0)={z? +3* STIU{Z +3° <1, 2 2 0)

and, for 0 <t <1,
i
F(t)={z—= V)’ +¢" <1-3}
2
U+ <, ngx/i}

U {a{t)e® + b(t)y® + c(t)z < 1, —\/g <z <V}

',

Uf{e? +¢° <1, -1<2 5 ——

where
B -1
T (42 + 4t — 92 12

a(t)
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_ —912 — 12
T (4vZ+ap—9v2-12

0 2V2Vi
e(t) = .

(4v2 + 4}t — 9v2 — 12
The set F(0) consists of the unit ball B of IR? plus half of the ellipse A
through (2,0), tangent to B at (0,+1). The set F(t), contained in F(0), is
made of the ball C centered at {+/,0) and tangent to 4 at (%\/ﬁ,d:ﬂ 1-3%),
plus a subset of A and a subset contained in B of the ellipse through
(~y/42y/1—§), (Vi 21— §). Notice also that, if 0 < 11 < 13 < 1,
then F(tz) C F(tl)

The Hausdorff distance between F{t;) and F(¢;) is less than the Haus-

dorff distance between the two curves

bt)

{a(tl)zz +b(t1)y2 +e(ti )z =1, —‘/t;; <z < \/ﬁ'}

{a(tZ)zz +b(t2)yz + c(tz)t =1, _\/%2— Lz < \/t_2.} )

which is less than 15[¢; — ¢3|. Therefore the map F(t) is Lipschitzean. On
the other hand, the circle inscribed in F(2) is {(z —v?)? +3y? <1~ £}, whose
center (+/1,0) is not Lipschitzean.

b) Let B be the unit ball in IR?. Set G : B — 28" 1o be

G(=) = F(||={)) ,

where F is as in Part a). Then G is Lipschitzean and Cg{z) = {+1/}]/=||,0).
The solution of 2’ € G(z), #(0) = 0 with maximal Ls-likelihood {equal to
1) is the constant 0, while 2’ = Cg(z), #(0) = 0 admits infinitely many
solutions = with Ls(z) < 1.

A
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